Extensions 1→N→G→Q→1 with N=C22 and Q=C6×D7

Direct product G=N×Q with N=C22 and Q=C6×D7
dρLabelID
D7×C22×C6168D7xC2^2xC6336,225

Semidirect products G=N:Q with N=C22 and Q=C6×D7
extensionφ:Q→Aut NdρLabelID
C22⋊(C6×D7) = C2×A4×D7φ: C6×D7/D14C3 ⊆ Aut C22426+C2^2:(C6xD7)336,217
C222(C6×D7) = C3×D4×D7φ: C6×D7/C3×D7C2 ⊆ Aut C22844C2^2:2(C6xD7)336,178
C223(C6×D7) = C6×C7⋊D4φ: C6×D7/C42C2 ⊆ Aut C22168C2^2:3(C6xD7)336,183

Non-split extensions G=N.Q with N=C22 and Q=C6×D7
extensionφ:Q→Aut NdρLabelID
C22.1(C6×D7) = C3×D42D7φ: C6×D7/C3×D7C2 ⊆ Aut C221684C2^2.1(C6xD7)336,179
C22.2(C6×D7) = C3×C4○D28φ: C6×D7/C42C2 ⊆ Aut C221682C2^2.2(C6xD7)336,177
C22.3(C6×D7) = C12×Dic7central extension (φ=1)336C2^2.3(C6xD7)336,65
C22.4(C6×D7) = C3×Dic7⋊C4central extension (φ=1)336C2^2.4(C6xD7)336,66
C22.5(C6×D7) = C3×C4⋊Dic7central extension (φ=1)336C2^2.5(C6xD7)336,67
C22.6(C6×D7) = C3×D14⋊C4central extension (φ=1)168C2^2.6(C6xD7)336,68
C22.7(C6×D7) = C3×C23.D7central extension (φ=1)168C2^2.7(C6xD7)336,73
C22.8(C6×D7) = C6×Dic14central extension (φ=1)336C2^2.8(C6xD7)336,174
C22.9(C6×D7) = D7×C2×C12central extension (φ=1)168C2^2.9(C6xD7)336,175
C22.10(C6×D7) = C6×D28central extension (φ=1)168C2^2.10(C6xD7)336,176
C22.11(C6×D7) = C2×C6×Dic7central extension (φ=1)336C2^2.11(C6xD7)336,182

׿
×
𝔽